Copied to
clipboard

G = C28.15C42order 448 = 26·7

8th non-split extension by C28 of C42 acting via C42/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.15C42, C42.1Dic7, C28.24M4(2), C7⋊C163C4, (C4×C28).1C4, (C2×C56).1C4, C8.32(C4×D7), C71(C16⋊C4), C56.36(C2×C4), C8⋊C4.4D7, (C2×C8).1Dic7, (C2×C8).150D14, C4.22(C4×Dic7), C14.2(C8⋊C4), C28.C8.6C2, C4.6(C4.Dic7), (C2×C56).217C22, (C2×C14).20M4(2), C2.3(C42.D7), C22.3(C4.Dic7), (C7×C8⋊C4).3C2, (C2×C28).302(C2×C4), (C2×C4).70(C2×Dic7), SmallGroup(448,23)

Series: Derived Chief Lower central Upper central

C1C28 — C28.15C42
C1C7C14C28C56C2×C56C28.C8 — C28.15C42
C7C28 — C28.15C42
C1C4C8⋊C4

Generators and relations for C28.15C42
 G = < a,b,c | a28=c4=1, b4=a21, bab-1=a13, ac=ca, cbc-1=a21b >

2C2
4C4
2C14
2C8
2C2×C4
4C28
7C16
7C16
7C16
7C16
2C2×C28
2C56
7M5(2)
7M5(2)
7C16⋊C4

Smallest permutation representation of C28.15C42
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 94 42 75 22 87 35 68 15 108 56 61 8 101 49 82)(2 107 43 60 23 100 36 81 16 93 29 74 9 86 50 67)(3 92 44 73 24 85 37 66 17 106 30 59 10 99 51 80)(4 105 45 58 25 98 38 79 18 91 31 72 11 112 52 65)(5 90 46 71 26 111 39 64 19 104 32 57 12 97 53 78)(6 103 47 84 27 96 40 77 20 89 33 70 13 110 54 63)(7 88 48 69 28 109 41 62 21 102 34 83 14 95 55 76)
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 78 71 64)(58 79 72 65)(59 80 73 66)(60 81 74 67)(61 82 75 68)(62 83 76 69)(63 84 77 70)(85 92 99 106)(86 93 100 107)(87 94 101 108)(88 95 102 109)(89 96 103 110)(90 97 104 111)(91 98 105 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,94,42,75,22,87,35,68,15,108,56,61,8,101,49,82)(2,107,43,60,23,100,36,81,16,93,29,74,9,86,50,67)(3,92,44,73,24,85,37,66,17,106,30,59,10,99,51,80)(4,105,45,58,25,98,38,79,18,91,31,72,11,112,52,65)(5,90,46,71,26,111,39,64,19,104,32,57,12,97,53,78)(6,103,47,84,27,96,40,77,20,89,33,70,13,110,54,63)(7,88,48,69,28,109,41,62,21,102,34,83,14,95,55,76), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,78,71,64)(58,79,72,65)(59,80,73,66)(60,81,74,67)(61,82,75,68)(62,83,76,69)(63,84,77,70)(85,92,99,106)(86,93,100,107)(87,94,101,108)(88,95,102,109)(89,96,103,110)(90,97,104,111)(91,98,105,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,94,42,75,22,87,35,68,15,108,56,61,8,101,49,82)(2,107,43,60,23,100,36,81,16,93,29,74,9,86,50,67)(3,92,44,73,24,85,37,66,17,106,30,59,10,99,51,80)(4,105,45,58,25,98,38,79,18,91,31,72,11,112,52,65)(5,90,46,71,26,111,39,64,19,104,32,57,12,97,53,78)(6,103,47,84,27,96,40,77,20,89,33,70,13,110,54,63)(7,88,48,69,28,109,41,62,21,102,34,83,14,95,55,76), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,78,71,64)(58,79,72,65)(59,80,73,66)(60,81,74,67)(61,82,75,68)(62,83,76,69)(63,84,77,70)(85,92,99,106)(86,93,100,107)(87,94,101,108)(88,95,102,109)(89,96,103,110)(90,97,104,111)(91,98,105,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,94,42,75,22,87,35,68,15,108,56,61,8,101,49,82),(2,107,43,60,23,100,36,81,16,93,29,74,9,86,50,67),(3,92,44,73,24,85,37,66,17,106,30,59,10,99,51,80),(4,105,45,58,25,98,38,79,18,91,31,72,11,112,52,65),(5,90,46,71,26,111,39,64,19,104,32,57,12,97,53,78),(6,103,47,84,27,96,40,77,20,89,33,70,13,110,54,63),(7,88,48,69,28,109,41,62,21,102,34,83,14,95,55,76)], [(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,78,71,64),(58,79,72,65),(59,80,73,66),(60,81,74,67),(61,82,75,68),(62,83,76,69),(63,84,77,70),(85,92,99,106),(86,93,100,107),(87,94,101,108),(88,95,102,109),(89,96,103,110),(90,97,104,111),(91,98,105,112)]])

82 conjugacy classes

class 1 2A2B4A4B4C4D4E7A7B7C8A8B8C8D8E8F14A···14I16A···16H28A···28L28M···28X56A···56X
order1224444477788888814···1416···1628···2828···2856···56
size112112442222222442···228···282···24···44···4

82 irreducible representations

dim11111122222222244
type++++--+
imageC1C2C2C4C4C4D7M4(2)M4(2)Dic7Dic7D14C4×D7C4.Dic7C4.Dic7C16⋊C4C28.15C42
kernelC28.15C42C28.C8C7×C8⋊C4C7⋊C16C4×C28C2×C56C8⋊C4C28C2×C14C42C2×C8C2×C8C8C4C22C7C1
# reps121822322333121212212

Matrix representation of C28.15C42 in GL4(𝔽113) generated by

81000
08100
00530
00053
,
0010
0001
0100
15000
,
1000
011200
00150
00098
G:=sub<GL(4,GF(113))| [81,0,0,0,0,81,0,0,0,0,53,0,0,0,0,53],[0,0,0,15,0,0,1,0,1,0,0,0,0,1,0,0],[1,0,0,0,0,112,0,0,0,0,15,0,0,0,0,98] >;

C28.15C42 in GAP, Magma, Sage, TeX

C_{28}._{15}C_4^2
% in TeX

G:=Group("C28.15C4^2");
// GroupNames label

G:=SmallGroup(448,23);
// by ID

G=gap.SmallGroup(448,23);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,253,64,387,100,1123,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^28=c^4=1,b^4=a^21,b*a*b^-1=a^13,a*c=c*a,c*b*c^-1=a^21*b>;
// generators/relations

Export

Subgroup lattice of C28.15C42 in TeX

׿
×
𝔽